Confidence IntervalsThe
where
Suppose the regression equation has N observations and
K coefficients.
For a parameter estimate b with estimated standard error se(b) the
100(1 [b where t is the
SHAZAM computes 90% and 95% confidence intervals using
the critical values of the t-distribution
that are tabulated in econometrics textbooks.
Alternatively, the user can specify critical values with the
ExampleThis example uses the Theil textile data set.
The textile demand equation is specified in log-log form.
The commands
(filename: SAMPLE 1 17 READ (THEIL.txt) YEAR CONSUME INCOME PRICE * Transform the data to logarithms GENR LC=LOG(CONSUME) GENR LY=LOG(INCOME) GENR LP=LOG(PRICE) * Estimate the log-log model OLS LC LY LP / LOGLOG CONFID LY LP CONSTANT STOP The The SHAZAM output can be viewed.
The estimated coefficient on the variable [-.89, -.77] The 95% interval estimate for the price elasticity is: [-.91, -.75] The next example computes 99% interval estimates. The
where SAMPLE 1 17 READ (THEIL.txt) YEAR CONSUME INCOME PRICE * Transform the data to logarithms GENR LC=LOG(CONSUME) GENR LY=LOG(INCOME) GENR LP=LOG(PRICE) * Get the critical value to use for interval estimates SAMPLE 1 1 GEN1 ALPHA=.01 GEN1 A2=ALPHA/2 DISTRIB A2 / INVERSE TYPE=T DF=14 CRITICAL=Z * Compute point estimates and interval estimates SAMPLE 1 17 OLS LC LY LP / LOGLOG CONFID LY LP CONSTANT / TCRIT=Z STOP The SHAZAM output can be viewed. The
The 99% interval estimate for the price elasticity is: [-.94, -.72] [SHAZAM Guide home] SHAZAM output - 90% and 95% interval estimates|_SAMPLE 1 17 |_READ (THEIL.txt) YEAR CONSUME INCOME PRICE UNIT 88 IS NOW ASSIGNED TO: THEIL.txt 4 VARIABLES AND 17 OBSERVATIONS STARTING AT OBS 1 |_* Transform the data to logarithms |_GENR LC=LOG(CONSUME) |_GENR LY=LOG(INCOME) |_GENR LP=LOG(PRICE) |_* Estimate the log-log model |_OLS LC LY LP / LOGLOG OLS ESTIMATION 17 OBSERVATIONS DEPENDENT VARIABLE = LC ...NOTE..SAMPLE RANGE SET TO: 1, 17 R-SQUARE = .9744 R-SQUARE ADJUSTED = .9707 VARIANCE OF THE ESTIMATE-SIGMA**2 = .97236E-03 STANDARD ERROR OF THE ESTIMATE-SIGMA = .31183E-01 SUM OF SQUARED ERRORS-SSE= .13613E-01 MEAN OF DEPENDENT VARIABLE = 4.8864 LOG OF THE LIKELIHOOD FUNCTION(IF DEPVAR LOG) = -46.5862 VARIABLE ESTIMATED STANDARD T-RATIO PARTIAL STANDARDIZED ELASTICITY NAME COEFFICIENT ERROR 14 DF P-VALUE CORR. COEFFICIENT AT MEANS LY 1.1432 .1560 7.328 .000 .891 .3216 1.1432 LP -.82884 .3611E-01 -22.95 .000 -.987 -1.0074 -.8288 CONSTANT 3.1636 .7048 4.489 .001 .768 .0000 3.1636 |_CONFID LY LP CONSTANT USING 95% AND 90% CONFIDENCE INTERVALS CONFIDENCE INTERVALS BASED ON T-DISTRIBUTION WITH 14 D.F. - T CRITICAL VALUES = 2.145 AND 1.761 NAME LOWER 2.5% LOWER 5% COEFFICIENT UPPER 5% UPPER 2.5% STD. ERROR LY .8085 .8684 1.1432 1.418 1.478 .156 LP -.9063 -.8924 -.82884 -.7652 -.7514 .036 CONSTANT 1.652 1.922 3.1636 4.405 4.675 .705 |_STOP
SHAZAM output - 99% interval estimates for regression coefficients|_SAMPLE 1 17 |_READ (THEIL.txt) YEAR CONSUME INCOME PRICE UNIT 88 IS NOW ASSIGNED TO: THEIL.txt 4 VARIABLES AND 17 OBSERVATIONS STARTING AT OBS 1 |_* Transform the data to logarithms |_GENR LC=LOG(CONSUME) |_GENR LY=LOG(INCOME) |_GENR LP=LOG(PRICE) |_* Get the critical value to use for interval estimates |_SAMPLE 1 1 |_GEN1 ALPHA=.01 |_GEN1 A2=ALPHA/2 |_DISTRIB A2 / INVERSE TYPE=T DF=14 CRITICAL=Z T DISTRIBUTION DF= 14.000 VARIANCE= 1.1667 H= 1.0000 PROBABILITY CRITICAL VALUE PDF A2 ROW 1 .50000E-02 2.9774 .98931E-02 |_* Compute point estimates and interval estimates |_SAMPLE 1 17 |_OLS LC LY LP / LOGLOG OLS ESTIMATION 17 OBSERVATIONS DEPENDENT VARIABLE = LC ...NOTE..SAMPLE RANGE SET TO: 1, 17 R-SQUARE = .9744 R-SQUARE ADJUSTED = .9707 VARIANCE OF THE ESTIMATE-SIGMA**2 = .97236E-03 STANDARD ERROR OF THE ESTIMATE-SIGMA = .31183E-01 SUM OF SQUARED ERRORS-SSE= .13613E-01 MEAN OF DEPENDENT VARIABLE = 4.8864 LOG OF THE LIKELIHOOD FUNCTION(IF DEPVAR LOG) = -46.5862 VARIABLE ESTIMATED STANDARD T-RATIO PARTIAL STANDARDIZED ELASTICITY NAME COEFFICIENT ERROR 14 DF P-VALUE CORR. COEFFICIENT AT MEANS LY 1.1432 .1560 7.328 .000 .891 .3216 1.1432 LP -.82884 .3611E-01 -22.95 .000 -.987 -1.0074 -.8288 CONSTANT 3.1636 .7048 4.489 .001 .768 .0000 3.1636 |_CONFID LY LP CONSTANT / TCRIT=Z CONFIDENCE INTERVALS BASED ON T-DISTRIBUTION WITH 14 D.F. - T CRITICAL VALUE = 2.977 NAME LOWER COEFFICIENT UPPER STD. ERROR LY .67868 1.1432 1.6076 .15600 LP -.93636 -.82884 -.72132 .36111E-01 CONSTANT 1.0651 3.1636 5.2620 .70480 |_STOP
|