Simple Exponential SmoothingWith the choice of a smoothing constant, a smoothed series can be generated by exponential smoothing. The smoothed value calculated for the final period can then be used as the forecast of future values. Newbold [1995, pp. 711-712] discusses that some judgement is required in the selection of a smoothing constant. A recommendation is to try several different values and select a value that minimizes the sum of squared forecast errors. The SHAZAM commands (filename:
The The SHAZAM output can be viewed.
The results are summarized in the table below. Note that the value in
the column
The results show that the sum of squared forecast errors is
smallest for
Comparison with ARIMA modellingMills [1990, pp. 154-5] discusses that simple exponential smoothing has an interpretation as the ARIMA(0,1,1) model:
(Xt where et is a random error. Forecasts are calculated as: XN+h = XN where a is the estimate of The SHAZAM commands (filename:
The SHAZAM output can be viewed.
The ARIMA estimation results show that the estimate of the smoothing
parameter ![]() SHAZAM output - Simple Exponential Smoothing|_SAMPLE 1 30 |_* Read the sales data |_READ SALES / BYVAR 1 VARIABLES AND 30 OBSERVATIONS STARTING AT OBS 1 |_PROC EXPSMTH |_ SAMPLE 1 30 |_ SMOOTH SALES / WEIGHT=W EMAVE=S |_ SAMPLE 2 30 |_* Generate 1-step ahead predictions |_ GENR PREDICT=LAG(S) |_* Generate forecast errors |_ GENR E=SALES-PREDICT |_* Calculate the sum of squared forecast errors |_ STAT E / CP=SSE |_ PRINT W SSE |_PROCEND |_SET NOOUTPUT NODOECHO |_* Try several different smoothing constants. |_GEN1 W=0.8 |_EXEC EXPSMTH W 0.8000000 SSE 1405769. |_GEN1 W=0.6 |_EXEC EXPSMTH W 0.6000000 SSE 1761367. |_GEN1 W=0.4 |_EXEC EXPSMTH W 0.4000000 SSE 2421086. |_GEN1 W=0.2 |_EXEC EXPSMTH W 0.2000000 SSE 3570107. |_STOP ![]() SHAZAM output - ARIMA estimation and forecasting|_SAMPLE 1 30 |_* Read the sales data |_READ SALES / BYVAR 1 VARIABLES AND 30 OBSERVATIONS STARTING AT OBS 1 |_* Estimate an ARIMA(0,1,1) model |_ARIMA SALES / NDIFF=1 NMA=1 NOCONSTANT COEF=ALPHA ARIMA MODEL NUMBER OF OBSERVATIONS = 30 ...NOTE..SAMPLE RANGE SET TO: 1, 30 DEGREE OF DIFFERENCING = 1 NUMBER OF MA PARAMETERS = 1 NO CONSTANT TERM IS IN THE MODEL ESTIMATION PROCEDURE STARTING VALUES OF PARAMETERS ARE: 0.50000 MEAN OF SERIES = -17.83 VARIANCE OF SERIES = 0.4332E+05 STANDARD DEVIATION OF SERIES = 208.1 INITIAL SUM OF SQUARES = 2036201.0 ITERATION STOPS - RELATIVE CHANGE IN SUM OF SQUARESLESS THAN 0.1E-05 NET NUMBER OF OBS IS 29 DIFFERENCING: 1 CONSECUTIVE, 0 SEASONAL WITH SPAN 0 CONVERGENCE AFTER 14 ITERATIONS INITIAL SUM OF SQS= 2036201.0 FINAL SUM OF SQS= 1128563.6 R-SQUARE = 0.0697 R-SQUARE ADJUSTED = 0.0364 VARIANCE OF THE ESTIMATE-SIGMA**2 = 40157. STANDARD ERROR OF THE ESTIMATE-SIGMA = 200.39 AKAIKE INFORMATION CRITERIA -AIC(K) = 10.670 SCHWARZ CRITERIA- SC(K) = 10.717 PARAMETER ESTIMATES STD ERROR T-STAT MA( 1) -0.30132 0.1760 -1.712 RESIDUALS LAGS AUTOCORRELATIONS STD ERR 1 -12 -.02 -.01 0.05 0.15 -.25 -.37 0.01 0.06 -.25 0.12 0.12 0.19 0.19 13 -24 -.29 0.10 0.07 -.05 -.21 0.04 0.07 -.10 -.04 0.08 -.01 0.01 0.24 25 -28 -.01 0.04 -.03 0.01 0.27 MODIFIED BOX-PIERCE (LJUNG-BOX-PIERCE) STATISTICS (CHI-SQUARE) LAG Q DF P-VALUE LAG Q DF P-VALUE 2 0.01 1 .910 15 20.41 14 .118 3 0.10 2 .953 16 20.60 15 .150 4 0.96 3 .812 17 23.90 16 .092 5 3.38 4 .496 18 24.01 17 .119 6 8.74 5 .120 19 24.48 18 .140 7 8.75 6 .188 20 25.46 19 .146 8 8.90 7 .260 21 25.66 20 .177 9 11.64 8 .168 22 26.52 21 .187 10 12.33 9 .195 23 26.52 22 .230 11 13.09 10 .218 24 26.54 23 .276 12 14.92 11 .186 25 26.55 24 .326 13 19.49 12 .077 26 26.92 25 .360 14 20.08 13 .093 27 27.23 26 .398 28 27.34 27 .446 CROSS-CORRELATIONS BETWEEN RESIDUALS AND (DIFFERENCED) SERIES CROSS-CORRELATION AT ZERO LAG = 0.94 LAGS CROSS CORRELATIONS Y(T),E(T-K) 1-12 0.27 -.01 0.04 0.16 -.20 -.42 -.10 0.06 -.21 0.04 0.15 0.21 13-24 -.22 0.01 0.08 -.03 -.22 -.02 0.08 -.07 -.06 0.06 0.02 0.01 25-28 -.01 0.03 -.02 0.01 LEADS CROSS CORRELATIONS Y(T),E(T+K) 1-12 -.02 0.00 0.09 0.08 -.35 -.35 0.03 -.02 -.20 0.15 0.17 0.10 13-24 -.24 0.12 0.05 -.11 -.19 0.06 0.04 -.11 -.02 0.08 0.00 0.01 25-28 0.01 0.03 -.02 0.01 ANALYSIS OF RESIDUALS VALUES RANGE FROM -510.0205 TO 370.5252 SAMPLE MOMENTS OF RESIDUALS (USING THE DIVISOR 29) : MEAN = -14.06923 VARIANCE = 38574.70 SKEWNESS = -0.1833068 KURTOSIS = 2.893125 STUDENTIZED RANGE = 4.483329 |_GEN1 S=SQRT($SIG2) ..NOTE..CURRENT VALUE OF $SIG2= 40157. |_* Forecasting |_ARIMA SALES / NDIFF=1 NMA=1 NOCONSTANT COEF=ALPHA SIGMA=S FBEG=30 FEND=34 ARIMA MODEL NUMBER OF OBSERVATIONS = 30 ...NOTE..SAMPLE RANGE SET TO: 1, 30 DEGREE OF DIFFERENCING = 1 NUMBER OF MA PARAMETERS = 1 NO CONSTANT TERM IS IN THE MODEL ARIMA FORECAST PARAMETER VALUES ARE: MA( 1)= -0.30132 FROM ORIGIN DATE 30, FORECASTS ARE CALCULATED UP TO 4 STEPS AHEAD FUTURE DATE LOWER FORECAST UPPER ACTUAL ERROR 31 862.852 1255.62 1648.39 32 611.019 1255.62 1900.23 33 432.969 1255.62 2078.28 34 287.117 1255.62 2224.13 STEPS AHEAD STD ERROR PSI WT 1 200.4 1.0000 2 328.9 1.3013 3 419.7 1.3013 4 494.1 1.3013 VARIANCE OF ONE-STEP-AHEAD ERRORS-SIGMA**2 = 0.4016E+05 STD.DEV. OF ONE-STEP-AHEAD ERRORS-SIGMA = 200.4 |_STOP ![]() |