Simple Exponential SmoothingWith the choice of a smoothing constant, a smoothed series can be generated by exponential smoothing. The smoothed value calculated for the final period can then be used as the forecast of future values. Newbold [1995, pp. 711-712] discusses that some judgement is required in the selection of a smoothing constant. A recommendation is to try several different values and select a value that minimizes the sum of squared forecast errors. The SHAZAM commands (filename:
The The SHAZAM output can be viewed.
The results are summarized in the table below. Note that the value in
the column
The results show that the sum of squared forecast errors is
smallest for
Comparison with ARIMA modellingMills [1990, pp. 154-5] discusses that simple exponential smoothing has an interpretation as the ARIMA(0,1,1) model:
(Xt where et is a random error. Forecasts are calculated as: XN+h = XN where a is the estimate of The SHAZAM commands (filename:
The SHAZAM output can be viewed.
The ARIMA estimation results show that the estimate of the smoothing
parameter
[SHAZAM Guide home]
SHAZAM output - Simple Exponential Smoothing|_SAMPLE 1 30
|_* Read the sales data
|_READ SALES / BYVAR
1 VARIABLES AND 30 OBSERVATIONS STARTING AT OBS 1
|_PROC EXPSMTH
|_ SAMPLE 1 30
|_ SMOOTH SALES / WEIGHT=W EMAVE=S
|_ SAMPLE 2 30
|_* Generate 1-step ahead predictions
|_ GENR PREDICT=LAG(S)
|_* Generate forecast errors
|_ GENR E=SALES-PREDICT
|_* Calculate the sum of squared forecast errors
|_ STAT E / CP=SSE
|_ PRINT W SSE
|_PROCEND
|_SET NOOUTPUT NODOECHO
|_* Try several different smoothing constants.
|_GEN1 W=0.8
|_EXEC EXPSMTH
W
0.8000000
SSE
1405769.
|_GEN1 W=0.6
|_EXEC EXPSMTH
W
0.6000000
SSE
1761367.
|_GEN1 W=0.4
|_EXEC EXPSMTH
W
0.4000000
SSE
2421086.
|_GEN1 W=0.2
|_EXEC EXPSMTH
W
0.2000000
SSE
3570107.
|_STOP
[SHAZAM Guide home]
SHAZAM output - ARIMA estimation and forecasting|_SAMPLE 1 30
|_* Read the sales data
|_READ SALES / BYVAR
1 VARIABLES AND 30 OBSERVATIONS STARTING AT OBS 1
|_* Estimate an ARIMA(0,1,1) model
|_ARIMA SALES / NDIFF=1 NMA=1 NOCONSTANT COEF=ALPHA
ARIMA MODEL
NUMBER OF OBSERVATIONS = 30
...NOTE..SAMPLE RANGE SET TO: 1, 30
DEGREE OF DIFFERENCING = 1
NUMBER OF MA PARAMETERS = 1
NO CONSTANT TERM IS IN THE MODEL
ESTIMATION PROCEDURE
STARTING VALUES OF PARAMETERS ARE:
0.50000
MEAN OF SERIES = -17.83
VARIANCE OF SERIES = 0.4332E+05
STANDARD DEVIATION OF SERIES = 208.1
INITIAL SUM OF SQUARES = 2036201.0
ITERATION STOPS - RELATIVE CHANGE IN SUM OF SQUARESLESS THAN 0.1E-05
NET NUMBER OF OBS IS 29
DIFFERENCING: 1 CONSECUTIVE, 0 SEASONAL WITH SPAN 0
CONVERGENCE AFTER 14 ITERATIONS
INITIAL SUM OF SQS= 2036201.0 FINAL SUM OF SQS= 1128563.6
R-SQUARE = 0.0697 R-SQUARE ADJUSTED = 0.0364
VARIANCE OF THE ESTIMATE-SIGMA**2 = 40157.
STANDARD ERROR OF THE ESTIMATE-SIGMA = 200.39
AKAIKE INFORMATION CRITERIA -AIC(K) = 10.670
SCHWARZ CRITERIA- SC(K) = 10.717
PARAMETER ESTIMATES STD ERROR T-STAT
MA( 1) -0.30132 0.1760 -1.712
RESIDUALS
LAGS AUTOCORRELATIONS STD ERR
1 -12 -.02 -.01 0.05 0.15 -.25 -.37 0.01 0.06 -.25 0.12 0.12 0.19 0.19
13 -24 -.29 0.10 0.07 -.05 -.21 0.04 0.07 -.10 -.04 0.08 -.01 0.01 0.24
25 -28 -.01 0.04 -.03 0.01 0.27
MODIFIED BOX-PIERCE (LJUNG-BOX-PIERCE) STATISTICS (CHI-SQUARE)
LAG Q DF P-VALUE LAG Q DF P-VALUE
2 0.01 1 .910 15 20.41 14 .118
3 0.10 2 .953 16 20.60 15 .150
4 0.96 3 .812 17 23.90 16 .092
5 3.38 4 .496 18 24.01 17 .119
6 8.74 5 .120 19 24.48 18 .140
7 8.75 6 .188 20 25.46 19 .146
8 8.90 7 .260 21 25.66 20 .177
9 11.64 8 .168 22 26.52 21 .187
10 12.33 9 .195 23 26.52 22 .230
11 13.09 10 .218 24 26.54 23 .276
12 14.92 11 .186 25 26.55 24 .326
13 19.49 12 .077 26 26.92 25 .360
14 20.08 13 .093 27 27.23 26 .398
28 27.34 27 .446
CROSS-CORRELATIONS BETWEEN RESIDUALS AND (DIFFERENCED) SERIES
CROSS-CORRELATION AT ZERO LAG = 0.94
LAGS CROSS CORRELATIONS Y(T),E(T-K)
1-12 0.27 -.01 0.04 0.16 -.20 -.42 -.10 0.06 -.21 0.04 0.15 0.21
13-24 -.22 0.01 0.08 -.03 -.22 -.02 0.08 -.07 -.06 0.06 0.02 0.01
25-28 -.01 0.03 -.02 0.01
LEADS CROSS CORRELATIONS Y(T),E(T+K)
1-12 -.02 0.00 0.09 0.08 -.35 -.35 0.03 -.02 -.20 0.15 0.17 0.10
13-24 -.24 0.12 0.05 -.11 -.19 0.06 0.04 -.11 -.02 0.08 0.00 0.01
25-28 0.01 0.03 -.02 0.01
ANALYSIS OF RESIDUALS
VALUES RANGE FROM -510.0205 TO 370.5252
SAMPLE MOMENTS OF RESIDUALS (USING THE DIVISOR 29) :
MEAN = -14.06923
VARIANCE = 38574.70
SKEWNESS = -0.1833068
KURTOSIS = 2.893125
STUDENTIZED RANGE = 4.483329
|_GEN1 S=SQRT($SIG2)
..NOTE..CURRENT VALUE OF $SIG2= 40157.
|_* Forecasting
|_ARIMA SALES / NDIFF=1 NMA=1 NOCONSTANT COEF=ALPHA SIGMA=S FBEG=30 FEND=34
ARIMA MODEL
NUMBER OF OBSERVATIONS = 30
...NOTE..SAMPLE RANGE SET TO: 1, 30
DEGREE OF DIFFERENCING = 1
NUMBER OF MA PARAMETERS = 1
NO CONSTANT TERM IS IN THE MODEL
ARIMA FORECAST
PARAMETER VALUES ARE:
MA( 1)= -0.30132
FROM ORIGIN DATE 30, FORECASTS ARE CALCULATED UP TO 4 STEPS AHEAD
FUTURE DATE LOWER FORECAST UPPER ACTUAL ERROR
31 862.852 1255.62 1648.39
32 611.019 1255.62 1900.23
33 432.969 1255.62 2078.28
34 287.117 1255.62 2224.13
STEPS AHEAD STD ERROR PSI WT
1 200.4 1.0000
2 328.9 1.3013
3 419.7 1.3013
4 494.1 1.3013
VARIANCE OF ONE-STEP-AHEAD ERRORS-SIGMA**2 = 0.4016E+05
STD.DEV. OF ONE-STEP-AHEAD ERRORS-SIGMA = 200.4
|_STOP
[SHAZAM Guide home]
|