Logit and Probit AnalysisWhen the dependent variable is a 0-1 binary variable the logit
or probit model estimation methods can be used.
In SHAZAM, these methods are implemented with the
For the
where depvar is a 0-1 binary dependent variable, indeps is a list of the explanatory variables and options is a list of desired options. The list of options is described in the SHAZAM User's Reference Manual. The logit model assumes that the response probability has the form:
An equivalent form can be stated by noting that:
The function guarantees probabilities in the (0,1) range.
The logit form also gives a plausible shape for the marginal effects.
That is, for a continuous variable The estimation problem is to find estimates of the unknown parameters . ExampleA data set on voting decisions for a school budget is available. The question of interest is: what factors influence the probability of a yes vote ? This question can be answered by interpreting the estimation results from a logit model. SHAZAM commands are given below.
The first model estimation includes the income and property tax variables in levels. The second model estimation includes log transformations of the income and property tax variables. Rubinfeld (1977, p. 35) comments: "The inclusion of logarithmic income and price terms resulted in a better fit than the inclusion of linear forms of the variables". The SHAZAM output can be viewed. The results are discussed in the following sections:
ReferencesGood textbook discussion is: William Greene, Econometric Analysis. References with more technical details are: R. Davidson and J.G. MacKinnon, "Convenient Specification Tests for Logit and Probit Models", Journal of Econometrics, Vol 25, 1984, pp. 241-262.
[SHAZAM Guide home] SHAZAM output|_SAMPLE 1 95 |_READ (school.txt) PUB12 PUB34 PUB5 PRIV YEARS SCHOOL & | LOGINC PTCON YESVM UNIT 88 IS NOW ASSIGNED TO: school.txt 9 VARIABLES AND 95 OBSERVATIONS STARTING AT OBS 1 |_* The income and tax variables are in logarithms -- take anti-logs |_* to express the variables in thousands of $. |_* Income |_GENR INCOME=EXP(LOGINC)/1000 |_* Property taxes |_GENR TAX=EXP(PTCON)/1000 |_* LOGIT estimation. |_LOGIT YESVM PUB12 PUB34 PUB5 PRIV YEARS SCHOOL INCOME TAX LOGIT ANALYSIS DEPENDENT VARIABLE =YESVM CHOICES = 2 95. TOTAL OBSERVATIONS 59. OBSERVATIONS AT ONE 36. OBSERVATIONS AT ZERO 25 MAXIMUM ITERATIONS CONVERGENCE TOLERANCE =0.00100 LOG OF LIKELIHOOD WITH CONSTANT TERM ONLY = -63.037 BINOMIAL ESTIMATE = 0.6211 ITERATION 0 LOG OF LIKELIHOOD FUNCTION = -63.037 ITERATION 1 ESTIMATES 0.54133 0.97999 0.39823 -0.23810 -0.28618E-01 1.1845 0.49110E-01 -1.6498 0.68486 ITERATION 1 LOG OF LIKELIHOOD FUNCTION = -55.958 ITERATION 2 ESTIMATES 0.61000 1.1179 0.44480 -0.30742 -0.31099E-01 1.7144 0.63240E-01 -2.0213 0.75025 ITERATION 2 LOG OF LIKELIHOOD FUNCTION = -55.560 ITERATION 3 ESTIMATES 0.62370 1.1363 0.44904 -0.31404 -0.31469E-01 1.8634 0.65039E-01 -2.0686 0.75393 ITERATION 3 LOG OF LIKELIHOOD FUNCTION = -55.548 ITERATION 4 ESTIMATES 0.62413 1.1368 0.44921 -0.31413 -0.31480E-01 1.8724 0.65077E-01 -2.0696 0.75389 ASYMPTOTIC WEIGHTED VARIABLE ESTIMATED STANDARD T-RATIO ELASTICITY AGGREGATE NAME COEFFICIENT ERROR AT MEANS ELASTICITY PUB12 0.62413 0.66847 0.93366 0.10588 0.10248 PUB34 1.1368 0.74861 1.5185 0.12577 0.10148 PUB5 0.44921 1.2500 0.35937 0.66268E-02 0.61577E-02 PRIV -0.31413 0.77985 -0.40281 -0.11585E-01 -0.11295E-01 YEARS -0.31480E-01 0.26096E-01 -1.2063 -0.93925E-01 -0.88468E-01 SCHOOL 1.8724 1.1255 1.6636 0.75959E-01 0.27663E-01 INCOME 0.65077E-01 0.35634E-01 1.8263 0.52655 0.48027 TAX -2.0696 1.0383 -1.9932 -0.78308 -0.73375 CONSTANT 0.75389 1.1352 0.66411 0.26413 0.24491 SCALE FACTOR = 0.22761 VARIABLE MARGINAL ----- PROBABILITIES FOR A TYPICAL CASE ----- NAME EFFECT CASE X=0 X=1 MARGINAL VALUES EFFECT PUB12 0.14206 0.0000 0.43871 0.59333 0.15462 PUB34 0.25874 0.0000 0.43871 0.70897 0.27026 PUB5 0.10224 0.0000 0.43871 0.55053 0.11182 PRIV -0.71499E-01 0.0000 0.43871 0.36342 -0.75286E-01 YEARS -0.71652E-02 8.5158 SCHOOL 0.42617 0.0000 0.43871 0.83562 0.39691 INCOME 0.14812E-01 23.094 TAX -0.47105 1.0800 LOG-LIKELIHOOD FUNCTION = -55.548 LOG-LIKELIHOOD(0) = -63.037 LIKELIHOOD RATIO TEST = 14.9788 WITH 8 D.F. P-VALUE= 0.05956 ESTRELLA R-SQUARE 0.15452 MADDALA R-SQUARE 0.14587 CRAGG-UHLER R-SQUARE 0.19853 MCFADDEN R-SQUARE 0.11881 ADJUSTED FOR DEGREES OF FREEDOM 0.36838E-01 APPROXIMATELY F-DISTRIBUTED 0.15168 WITH 8 AND 9 D.F. CHOW R-SQUARE 0.13244 PREDICTION SUCCESS TABLE ACTUAL 0 1 0 14. 6. PREDICTED 1 22. 53. NUMBER OF RIGHT PREDICTIONS = 67.0 PERCENTAGE OF RIGHT PREDICTIONS = 0.70526 NAIVE MODEL PERCENTAGE OF RIGHT PREDICTIONS = 0.62105 EXPECTED OBSERVATIONS AT 0 = 36.0 OBSERVED = 36.0 EXPECTED OBSERVATIONS AT 1 = 59.0 OBSERVED = 59.0 SUM OF SQUARED "RESIDUALS" = 19.397 WEIGHTED SUM OF SQUARED "RESIDUALS" = 89.109 HENSHER-JOHNSON PREDICTION SUCCESS TABLE OBSERVED OBSERVED PREDICTED CHOICE COUNT SHARE ACTUAL 0 1 0 16.718 19.282 36.000 0.379 1 19.282 39.718 59.000 0.621 PREDICTED COUNT 36.000 59.000 95.000 1.000 PREDICTED SHARE 0.379 0.621 1.000 PROP. SUCCESSFUL 0.464 0.673 0.594 SUCCESS INDEX 0.085 0.052 0.065 PROPORTIONAL ERROR 0.000 0.000 NORMALIZED SUCCESS INDEX 0.138 |_* Now use the log transformed form of income and taxes. |_LOGIT YESVM PUB12 PUB34 PUB5 PRIV YEARS SCHOOL LOGINC PTCON LOGIT ANALYSIS DEPENDENT VARIABLE =YESVM CHOICES = 2 95. TOTAL OBSERVATIONS 59. OBSERVATIONS AT ONE 36. OBSERVATIONS AT ZERO 25 MAXIMUM ITERATIONS CONVERGENCE TOLERANCE =0.00100 LOG OF LIKELIHOOD WITH CONSTANT TERM ONLY = -63.037 BINOMIAL ESTIMATE = 0.6211 ITERATION 0 LOG OF LIKELIHOOD FUNCTION = -63.037 ITERATION 1 ESTIMATES 0.45375 0.92076 0.43035 -0.28835 -0.23416E-01 1.3330 1.6059 -1.7546 -3.7958 ITERATION 1 LOG OF LIKELIHOOD FUNCTION = -54.139 ITERATION 2 ESTIMATES 0.55298 1.0944 0.50979 -0.32984 -0.25855E-01 2.1655 2.0427 -2.2551 -4.7103 ITERATION 2 LOG OF LIKELIHOOD FUNCTION = -53.370 ITERATION 3 ESTIMATES 0.58166 1.1250 0.52500 -0.33987 -0.26178E-01 2.5635 2.1706 -2.3799 -5.1361 ITERATION 3 LOG OF LIKELIHOOD FUNCTION = -53.304 ITERATION 4 ESTIMATES 0.58362 1.1261 0.52605 -0.34139 -0.26129E-01 2.6239 2.1869 -2.3942 -5.2003 ITERATION 4 LOG OF LIKELIHOOD FUNCTION = -53.303 ITERATION 5 ESTIMATES 0.58364 1.1261 0.52606 -0.34142 -0.26127E-01 2.6250 2.1872 -2.3945 -5.2014 ASYMPTOTIC WEIGHTED VARIABLE ESTIMATED STANDARD T-RATIO ELASTICITY AGGREGATE NAME COEFFICIENT ERROR AT MEANS ELASTICITY PUB12 0.58364 0.68778 0.84858 0.93986E-01 0.91051E-01 PUB34 1.1261 0.76820 1.4659 0.11827 0.96460E-01 PUB5 0.52606 1.2693 0.41445 0.73664E-02 0.69375E-02 PRIV -0.34142 0.78299 -0.43605 -0.11952E-01 -0.12037E-01 YEARS -0.26127E-01 0.26934E-01 -0.97006 -0.73996E-01 -0.68592E-01 SCHOOL 2.6250 1.4101 1.8616 0.10108 0.28999E-01 LOGINC 2.1872 0.78781 2.7763 7.2529 6.7561 PTCON -2.3945 1.0813 -2.2145 -5.5262 -5.1745 CONSTANT -5.2014 7.5503 -0.68890 -1.7298 -1.6137 SCALE FACTOR = 0.22197 VARIABLE MARGINAL ----- PROBABILITIES FOR A TYPICAL CASE ----- NAME EFFECT CASE X=0 X=1 MARGINAL VALUES EFFECT PUB12 0.12955 0.0000 0.44231 0.58706 0.14476 PUB34 0.24996 0.0000 0.44231 0.70978 0.26747 PUB5 0.11677 0.0000 0.44231 0.57304 0.13073 PRIV -0.75785E-01 0.0000 0.44231 0.36049 -0.81814E-01 YEARS -0.57995E-02 8.5158 SCHOOL 0.58267 0.0000 0.44231 0.91631 0.47400 LOGINC 0.48548 9.9711 PTCON -0.53150 6.9395 LOG-LIKELIHOOD FUNCTION = -53.303 LOG-LIKELIHOOD(0) = -63.037 LIKELIHOOD RATIO TEST = 19.4681 WITH 8 D.F. P-VALUE= 0.01255 ESTRELLA R-SQUARE 0.19956 MADDALA R-SQUARE 0.18529 CRAGG-UHLER R-SQUARE 0.25218 MCFADDEN R-SQUARE 0.15442 ADJUSTED FOR DEGREES OF FREEDOM 0.75759E-01 APPROXIMATELY F-DISTRIBUTED 0.20544 WITH 8 AND 9 D.F. CHOW R-SQUARE 0.17197 PREDICTION SUCCESS TABLE ACTUAL 0 1 0 18. 7. PREDICTED 1 18. 52. NUMBER OF RIGHT PREDICTIONS = 70.0 PERCENTAGE OF RIGHT PREDICTIONS = 0.73684 NAIVE MODEL PERCENTAGE OF RIGHT PREDICTIONS = 0.62105 EXPECTED OBSERVATIONS AT 0 = 36.0 OBSERVED = 36.0 EXPECTED OBSERVATIONS AT 1 = 59.0 OBSERVED = 59.0 SUM OF SQUARED "RESIDUALS" = 18.513 WEIGHTED SUM OF SQUARED "RESIDUALS" = 86.839 HENSHER-JOHNSON PREDICTION SUCCESS TABLE OBSERVED OBSERVED PREDICTED CHOICE COUNT SHARE ACTUAL 0 1 0 17.591 18.409 36.000 0.379 1 18.409 40.591 59.000 0.621 PREDICTED COUNT 36.000 59.000 95.000 1.000 PREDICTED SHARE 0.379 0.621 1.000 PROP. SUCCESSFUL 0.489 0.688 0.612 SUCCESS INDEX 0.110 0.067 0.083 PROPORTIONAL ERROR 0.000 0.000 NORMALIZED SUCCESS INDEX 0.177 |_* Use the LOG option to compute elasticities and marginal effects |_* assuming log-transformed variables. |_LOGIT YESVM PUB12 PUB34 PUB5 PRIV YEARS SCHOOL LOGINC PTCON / LOG LOGIT ANALYSIS DEPENDENT VARIABLE =YESVM CHOICES = 2 95. TOTAL OBSERVATIONS 59. OBSERVATIONS AT ONE 36. OBSERVATIONS AT ZERO 25 MAXIMUM ITERATIONS CONVERGENCE TOLERANCE =0.00100 LOG OF LIKELIHOOD WITH CONSTANT TERM ONLY = -63.037 BINOMIAL ESTIMATE = 0.6211 ITERATION 0 LOG OF LIKELIHOOD FUNCTION = -63.037 ITERATION 1 ESTIMATES 0.45375 0.92076 0.43035 -0.28835 -0.23416E-01 1.3330 1.6059 -1.7546 -3.7958 ITERATION 1 LOG OF LIKELIHOOD FUNCTION = -54.139 ITERATION 2 ESTIMATES 0.55298 1.0944 0.50979 -0.32984 -0.25855E-01 2.1655 2.0427 -2.2551 -4.7103 ITERATION 2 LOG OF LIKELIHOOD FUNCTION = -53.370 ITERATION 3 ESTIMATES 0.58166 1.1250 0.52500 -0.33987 -0.26178E-01 2.5635 2.1706 -2.3799 -5.1361 ITERATION 3 LOG OF LIKELIHOOD FUNCTION = -53.304 ITERATION 4 ESTIMATES 0.58362 1.1261 0.52605 -0.34139 -0.26129E-01 2.6239 2.1869 -2.3942 -5.2003 ITERATION 4 LOG OF LIKELIHOOD FUNCTION = -53.303 ITERATION 5 ESTIMATES 0.58364 1.1261 0.52606 -0.34142 -0.26127E-01 2.6250 2.1872 -2.3945 -5.2014 ELASTICITIES ASSUME LOG-TRANSFORMED VARIABLES ASYMPTOTIC WEIGHTED VARIABLE ESTIMATED STANDARD T-RATIO ELASTICITY AGGREGATE NAME COEFFICIENT ERROR AT MEANS ELASTICITY PUB12 0.58364 0.68778 0.84858 0.19410 0.18107 PUB34 1.1261 0.76820 1.4659 0.37451 0.34937 PUB5 0.52606 1.2693 0.41445 0.17495 0.16321 PRIV -0.34142 0.78299 -0.43605 -0.11355 -0.10592 YEARS -0.26127E-01 0.26934E-01 -0.97006 -0.86893E-02 -0.81059E-02 SCHOOL 2.6250 1.4101 1.8616 0.87301 0.81439 LOGINC 2.1872 0.78781 2.7763 0.72739 0.67856 PTCON -2.3945 1.0813 -2.2145 -0.79633 -0.74287 CONSTANT -5.2014 7.5503 -0.68890 -1.7298 -1.6137 SCALE FACTOR = 0.22197 MARGINAL EFFECTS ASSUME ALL VARIABLES ARE LOG-TRANSFORMED (EXCEPT DUMMY VARIABLES) VARIABLE MARGINAL ----- PROBABILITIES FOR A TYPICAL CASE ----- NAME EFFECT CASE X=0 X=1 MARGINAL VALUES EFFECT PUB12 0.12955 0.0000 0.44231 0.58706 0.14476 PUB34 0.24996 0.0000 0.44231 0.70978 0.26747 PUB5 0.11677 0.0000 0.44231 0.57304 0.13073 PRIV -0.75785E-01 0.0000 0.44231 0.36049 -0.81814E-01 YEARS -0.28859E-21 8.5158 SCHOOL 0.58267 0.0000 0.44231 0.91631 0.47400 LOGINC 0.21022E-04 9.9711 PTCON -0.49214E-03 6.9395 LOG-LIKELIHOOD FUNCTION = -53.303 LOG-LIKELIHOOD(0) = -63.037 LIKELIHOOD RATIO TEST = 19.4681 WITH 8 D.F. P-VALUE= 0.01255 ESTRELLA R-SQUARE 0.19956 MADDALA R-SQUARE 0.18529 CRAGG-UHLER R-SQUARE 0.25218 MCFADDEN R-SQUARE 0.15442 ADJUSTED FOR DEGREES OF FREEDOM 0.75759E-01 APPROXIMATELY F-DISTRIBUTED 0.20544 WITH 8 AND 9 D.F. CHOW R-SQUARE 0.17197 PREDICTION SUCCESS TABLE ACTUAL 0 1 0 18. 7. PREDICTED 1 18. 52. NUMBER OF RIGHT PREDICTIONS = 70.0 PERCENTAGE OF RIGHT PREDICTIONS = 0.73684 NAIVE MODEL PERCENTAGE OF RIGHT PREDICTIONS = 0.62105 EXPECTED OBSERVATIONS AT 0 = 36.0 OBSERVED = 36.0 EXPECTED OBSERVATIONS AT 1 = 59.0 OBSERVED = 59.0 SUM OF SQUARED "RESIDUALS" = 18.513 WEIGHTED SUM OF SQUARED "RESIDUALS" = 86.839 HENSHER-JOHNSON PREDICTION SUCCESS TABLE OBSERVED OBSERVED PREDICTED CHOICE COUNT SHARE ACTUAL 0 1 0 17.591 18.409 36.000 0.379 1 18.409 40.591 59.000 0.621 PREDICTED COUNT 36.000 59.000 95.000 1.000 PREDICTED SHARE 0.379 0.621 1.000 PROP. SUCCESSFUL 0.489 0.688 0.612 SUCCESS INDEX 0.110 0.067 0.083 PROPORTIONAL ERROR 0.000 0.000 NORMALIZED SUCCESS INDEX 0.177 |_STOP [SHAZAM Guide home] |