Computing a p-value for the Durbin-Watson test for Fixed Effects ModelsA discussion of the generalization of the Durbin-Watson test to testing for serial correlation in the OLS residuals from the fixed effects model is given in Bhargava, Franzini and Narendranathan [1982]. The Durbin-Watson test statistic can be expressed as: d = ê'Aê / ê'ê where ê are the OLS residuals and the A matrix is
suitably constructed for the panel data. The exact distribution of d is
calculated using the Imhof routine that computes the cumulative
distribution function for a quadratic form in normal variables.
This is implemented with the The SHAZAM commands (filename:
The SHAZAM output can be viewed.
[SHAZAM Guide home]
SHAZAM output|_SAMPLE 1 20
|_READ(FIRM1.txt) YEAR IGM FGM CGM ICHR FCHR CCHR / SKIPLINES=1
UNIT 88 IS NOW ASSIGNED TO: FIRM1.txt
7 VARIABLES AND 20 OBSERVATIONS STARTING AT OBS 1
|_READ(FIRM2.txt) YEAR IGE FGE CGE IWH FWH CWH / SKIPLINES=1
UNIT 88 IS NOW ASSIGNED TO: FIRM2.txt
7 VARIABLES AND 20 OBSERVATIONS STARTING AT OBS 1
|_READ(FIRM3.txt) YEAR IUS FUS CUS / SKIPLINES=1
UNIT 88 IS NOW ASSIGNED TO: FIRM3.txt
4 VARIABLES AND 20 OBSERVATIONS STARTING AT OBS 1
|_* Stack the data
|_MATRIX I=(IGM'|ICHR'|IGE'|IWH'|IUS')'
|_MATRIX F=(FGM'|FCHR'|FGE'|FWH'|FUS')'
|_MATRIX C=(CGM'|CCHR'|CGE'|CWH'|CUS')'
|_GEN1 NC=5
|_GEN1 NT=20
|_* Create cross-section dummy variables.
|_MATRIX CSDUM=SEAS(100,-NC)
|_* OLS estimation with dummy variables
|_SAMPLE 1 100
|_POOL I F C CSDUM / NOCONSTANT NCROSS=5 OLS HETCOV RSTAT RESID=E
POOLED CROSS-SECTION TIME-SERIES ESTIMATION
100 TOTAL OBSERVATIONS
5 CROSS-SECTIONS
20 TIME-PERIODS
DEPENDENT VARIABLE = I
POOLING BY OLS
USING PANEL-CORRECTED COVARIANCE MATRIX
LM TEST FOR CROSS-SECTION HETEROSKEDASTICITY 33.468
CHI-SQUARE WITH 4 D.F. P-VALUE= 0.00000
BREUSCH-PAGAN LM TEST FOR DIAGONAL COVARIANCE MATRIX 28.322
CHI-SQUARE WITH 10 D.F. P-VALUE= 0.00160
R-SQUARE = 0.9375
VARIANCE OF THE ESTIMATE-SIGMA**2 = 4777.3
STANDARD ERROR OF THE ESTIMATE-SIGMA = 69.118
SUM OF SQUARED ERRORS-SSE= 0.44429E+06
MEAN OF DEPENDENT VARIABLE = 248.96
LOG OF THE LIKELIHOOD FUNCTION = -561.847
VARIABLE ESTIMATED STANDARD T-RATIO PARTIAL STANDARDIZED ELASTICITY
NAME COEFFICIENT ERROR 93 DF P-VALUE CORR. COEFFICIENT AT MEANS
F 0.10598 0.1771E-01 5.985 0.000 0.527 0.5621 0.8183
C 0.34666 0.2716E-01 12.76 0.000 0.798 0.4808 0.4331
CSDUM -76.067 74.99 -1.014 0.313-0.105 -0.1142 -0.0611
CSDUM -29.374 11.93 -2.462 0.016-0.247 -0.0441 -0.0236
CSDUM -242.17 35.36 -6.849 0.000-0.579 -0.3635 -0.1945
CSDUM -57.899 12.77 -4.534 0.000-0.425 -0.0869 -0.0465
CSDUM 92.539 39.35 2.352 0.021 0.237 0.1389 0.0743
DURBIN-WATSON = 0.7745 VON NEUMANN RATIO = 0.7823 RHO = 0.60606
RESIDUAL SUM = 0.41922E-11 RESIDUAL VARIANCE = 4777.3
SUM OF ABSOLUTE ERRORS= 4782.7
R-SQUARE BETWEEN OBSERVED AND PREDICTED = 0.9375
|_* Compute a p-value for the Durbin-Watson statistic
|_GEN1 K=$K
..NOTE..CURRENT VALUE OF $K = 7.0000
|_GEN1 NOBS=100
|_MATRIX X=(F|C|CSDUM)
|_MATRIX M=IDEN(NOBS)-X*INV(X'X)*X'
|_* Generate the A matrix
|_SAMPLE 1 NT
|_GENR D=2
|_IF(TIME(0).EQ.1) D=1
|_IF(TIME(0).EQ.NT) D=1
|_MATRIX A=IDEN(NT,2)
|_MATRIX A=-(A+A')+DIAG(D)
|_MATRIX ASTAR=IDEN(NC)@A
|_* Get the eigenvalues of MA (sorted in descending order)
|_MATRIX MA=M*ASTAR
|_MATRIX EDW=EIGVAL(MA)
|_* Determine the number of non-zero eigenvalues.
|_GEN1 DF=NOBS-K
|_* Compute the DW statistic
|_MATRIX DWTEST=(E'ASTAR*E)/(E'E)
|_* Compute the p-value with the IMHOF routine.
|_SAMPLE 1 1
|_DISTRIB DWTEST / EIGENVAL=EDW TYPE=IMHOF NEIGEN=DF CDF=PVALUE
DATA CDF 1-CDF
DWTEST
ROW 1 0.77452 0.28982E-09 1.0000
|_PRINT DWTEST DF PVALUE
DWTEST DF PVALUE
0.7745177 93.00000 0.2898198E-09
|_STOP
[SHAZAM Guide home]
|